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We present a model for desorption induced by �multiple� electronic transitions �DIET �DIMET�� based on
potential energy surfaces calculated with the delta self-consistent field extension of density-functional theory.
We calculate potential energy surfaces of CO and NO molecules adsorbed on various transition-metal surfaces
and show that classical nuclear dynamics does not suffice for propagation in the excited state. We present a
simple Hamiltonian describing the system with parameters obtained from the excited-state potential energy
surface and show that this model can describe desorption dynamics in both the DIET and DIMET regimes and
reproduce the power-law behavior observed experimentally. We observe that the internal stretch degree of
freedom in the molecules is crucial for the energy transfer between the hot electrons and the molecule when the
coupling to the surface is strong.
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I. INTRODUCTION

The advent of femtosecond lasers has initiated major
progress in the study of nonadiabatic surface dynamics on a
wide range of systems. Photoinduced desorption had already
been observed for a few adsorbate systems1,2 using low-
intensity nanosecond laser pulses, but high-intensity femto-
second laser pulses have been shown to induce desorption in
a large class of adsorbate systems3–10 and induce chemical
reactions which cannot proceed by thermal heating.11

The mechanism attributed to these reactions is excitation
of substrate electrons by the laser pulse. A single hot electron
can then interact with an initially unoccupied adsorbate reso-
nance, thus asserting a force on the adsorbate nuclei which
may then lead to desorption induced by electronic transitions
�DIET�. Using femtosecond lasers, it is possible to reach
high densities of excited electrons resulting in a different
dominating mechanism—desorption induced by multiple
electronic transitions �DIMET� �Ref. 12� where several hot
electrons interact with the adsorbate.

A different method to produce hot electron based on a
metal-insulator-metal �MIM� heterostructure was suggested
by Gadzuk.13 With an ideal MIM device, it is possible to
tune hot electrons to any desired resonance of an adsorbate
system and the approach thereby suggests the highly attrac-
tive possibility of performing selective chemistry at surfaces.
Such devices have been constructed and characterized14 and
comprise a promising candidate for future hot-electron fem-
tochemistry experiments.

The theoretical framework to describe the nonadiabatic
dynamics resulting from a hot electron interacting with an
adsorbate is usually based on the concept of potential energy
surfaces �PESs�. In the Born-Oppenheimer approximation
the electrons are assumed to remain in their ground state and
are thus decoupled from the nuclei. This allows one to map
out a ground-state PES for the nuclei by calculating the elec-
tronic energy for each position of the nuclei. Similarly, when
an initially unoccupied resonance becomes occupied, a new
excited-state PES arises which has its minimum at a different
location from the ground-state PES and a force is exerted on

the adsorbate. Several models have emerged to deal with
nonadiabatic dynamics at surfaces, but they are usually lim-
ited by the difficulty to obtain reliable excited-state PESs and
most theoretical results are based on model potentials.15–20

An often used method to treat the extreme DIMET regime
with many contributing electrons is using an electronic fric-
tion model.21–23 The hot electrons are then assumed to ther-
malize rapidly and the influence of the electrons on the ad-
sorbate is treated statistically using an electronic temperature
which can be several thousands of Kelvins. The conceptual
picture is that of a hot Fermi distribution with a tail partially
overlapping an adsorbate resonance and thereby exerting a
force on the adsorbate. However, correct calculation of the
temperature-dependent friction still requires knowledge of
the excited-state PES.

The subject of this paper will be the application of two-
dimensional excited-state PESs to calculate desorption prob-
abilities. We will be particularly interested in the DIET re-
gime where the hot electron has a known energy as relevant
for the MIM device and the few-electron DIMET regime.
Although the friction models have enjoyed some success,24,25

there is still a need of a microscopic nonstatistical model of
DIMET to test the assumption of thermally equilibrated elec-
trons and to bridge the gap to the DIET regime. Furthermore,
the hot-electron femtochemistry relevant to the MIM device
can certainly not be described using an electronic tempera-
ture since all electrons are tuned to a specific energy.

We start by summarizing the method of linear-expansion
delta self-consistent field extension of density-functional
theory ��SCF-DFT� �Ref. 26� used to calculate the excited-
state PESs and note some qualitative features using CO on
Pt�111� as an example. We then discuss the models used to
obtain desorption probabilities based on the calculated poten-
tial energy surfaces. First an adiabatic model in which the
adsorbate jumps between the ground- and excited-state
potentials is presented. A general nonadiabatic
Newns-Anderson-type27,28 model is then introduced and the
connection to potential energy surfaces is explained. This
model with linear coupling has previously been solved29 and
applied to the one-dimensional desorption problem with
model parameters.16 We extend these results to a two-
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dimensional adsorbate and obtain the nonadiabatic coupling
parameters from calculated excited-state potential energy
surfaces. In the DIET regime, the model will be used to show
that for small excited-state lifetimes the main channel of en-
ergy transfer is the internal degree of freedom and we em-
phasize its importance in desorption dynamics. We compare
the calculated desorption probabilities for CO and NO on
four transition-metal surfaces and note some general features
of the desorption dynamics. The scattering probabilities ob-
tained in the model are then generalized to include adsor-
bates in any vibrationally excited state which allow us to
extend the calculations to include a substrate temperature
and to treat the DIMET regime within the model. In Appen-
dix A it is shown how to expand excited states within the
projector augmented wave �PAW� formalism, and in Appen-
dix B the results and generalizations of scattering amplitude
calculations are summarized.

II. POTENTIAL ENERGY SURFACES

The potential energy surfaces were obtained using the
code GPAW �Refs. 30 and 31� which is a real-space density-
functional theory �DFT� code that uses the projector aug-
mented wave method.32,33 In all our calculations we used the
revised Perdew-Burke-Ernzerhof �RPBE� exchange-
correlation functional34 since this has been designed to per-
form well for molecules adsorbed on surfaces and has been
shown to perform better than the original PBE functional35

both for isolated molecules36 and for adsorbed molecules.
For each metal we set up a closed-packed surface consisting
of three atomic layers with the top layer being relaxed. 10 Å
of vacuum was then introduced above the slab and 0.25
monolayer of adsorbate molecules relaxed at either top or at
hcp hollow site. We then mapped out two-dimensional
ground-state potential energy surfaces in terms of the internal
stretch and the center of mass �COM� to surface distance
coordinate using 12 irreducible k points and a grid spacing of
0.2 Å.

To find the excited-state potential energy surfaces, we use
the method of linear-expansion delta self-consistent field
��SCF� which we have published in a previous work26 and
implemented in GPAW. In the previous publication we have
tested the method against inverse photoemission spectros-
copy and found that it performed well for molecules chemi-
sorbed on surfaces.26 In each step of the self-consistency
cycle an electron is removed from the Fermi level, the den-
sity of an excited state is added to the total density, and the
band energy of this state is added to the total energy. To get
the band energy right, we need to expand the excited state on
the Kohn-Sham �KS� orbitals found in each iteration. The
method is thus a generalization of the usual �SCF where
occupations numbers are changed. Instead of changing occu-
pation numbers we occupy an orbital which is not an eigen-
state of the KS Hamiltonian but a superposition of eigen-
states, in such a way that the state is as close as possible to
the original molecular state. We refer to Appendix A for
details on how to do this within the projector augmented
wave formalism. The excited states used in this paper are the
antibonding 2� orbitals of NO and CO.

In the previous publication,26 we investigated the influ-
ence of the interactions between neighboring supercells for
different supercell sizes and found that the size dependency
of the excitation energy is consistent with an electrostatic
dipole-dipole interaction. Already for a �2�2� surface cell,
the interaction energy has become small, and furthermore
this interaction energy will have little influence on the slope
of the excited-state PES and thus little influence on the cal-
culated desorption rates. For this reason and to keep the cal-
culations manageable, we use a �2�2� surface cell.

As an example we show the two-dimensional excited-
state PES superimposed on a ground-state PES in the case of
CO on Pt�111� top site in Fig. 1. The molecules adsorb with
the molecular axis perpendicular to the surface with carbon
closest to the top site. Due to the symmetry of the 2� orbital
and the geometry at the ground-state minimum, we cannot
induce forces parallel to the surface if the molecule is at the
ground-state minimum when excited. The excited state could
have unstable extremal points with respect to the degrees of
freedom parallel to the surface; but the model we apply in
this work only depends on the degrees of freedom with non-
vanishing derivatives on the excited-state PES and we thus
assume that the COM and internal stretch degrees of freedom
should capture the essential desorption dynamics of the con-
sidered systems.

Since the excited molecule has an extra electron in an
antibonding orbital the excited molecule is expected to have
a larger equilibrium bond length and this is also what we
observe. A popular and conceptually simple way of explain-
ing desorption in one-dimensional models of DIET is the
Antoniewicz mechanism,37 where the excited molecule in-
duces an image charge on the surface which results in an
attractive force on the surface. The excited molecule is then
accelerated toward the surface and eventually decays to the
steep wall of the ground-state Morse potential. From Fig. 1
we observe a qualitatively different behavior: the COM of
the excited molecules experience a repulsive force accelerat-
ing the COM of the molecule away from the surface. This is
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FIG. 1. �Color� Ground- and excited-state �2�� potential energy
surfaces for CO adsorbed on Pt�111� top site. The coverage is 0.25
monolayer.
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due to the effect of the bond-length expansion and the fact
that the 2� orbital has a large density in the vicinity of the
carbon atom which gives a repulsion that dominates the im-
age charge attraction. It will be shown below that for the
considered systems, it is primarily excitation of the internal
degree of freedom which is responsible for the large energy
transfers leading to desorption. The potential energy surfaces
for CO adsorbed on Pd, Rh, and Ru show very similar quali-
tative features.

III. MODELS

The time scale at which adsorbates dissipate energy to the
substrate is typically on the order of picoseconds38 and since
the oscillation times for the two modes is �15–50 fs �see
Sec. IV A� we will assume that the molecule has plenty of
time to desorb if it has absorbed the required energy from a
hot electron. This is the major assumption we will impose
and thus when we refer to desorption rates in the following,
it is the rate of transferring at least of the energy needed for
a molecule to desorb.

Assuming a Lorentzian resonance with full width at half
maximum �FWHM� �=� /� centered at �a, the probability
that a hot electron of energy 	 desorbs the molecule becomes

Pdes
ad �	� =

��/2�2

�	 − �a�2 + ��/2�2

1

�
�

0




P�td�e−td/�dtd, �1�

where P�td� is the probability of a desorption event when the
molecule is excited at t=0 and decays at time t= td. Using
classical dynamics, the probability P�td� can be obtained by
propagating the molecule on the excited-state PES according
to the forces, evaluate the energy gain �E after time td, and
set P�td�=1 if �E�Edes and P�td�=0 if �E�Edes. However,
the short lifetime of the excited electron implies that classical
molecular propagation on the excited-state PES may not be a
good approximation.

In fact, the classical limit is obtained when the action S
=�dtL�ẋ�t� ,x�t�� on a representative path satisfies

�S�  � . �2�

Assuming a quadratic excited-state potential of frequency �
and initial potential energy E0, we can evaluate the action on
a classical path between initial time ti and final time tf. For
generic time scales one just obtains the usual condition of
high excitation numbers E0��, whereas for ��t�1, the
additional condition of E0�t� needs to be satisfied in or-
der to apply classical dynamics. In the case of CO on Pt�111�
we have E0�0.3 eV �Fig. 1� and ��1 fs �Fig. 8� which
gives E0�t��. Thus molecular propagation on the excited-
state PES is not expected to follow the classical equations of
motion. Below we will show an example where a classical
analysis underestimates desorption probabilities by several
orders of magnitude.

This scheme could be extended to a quantum dynamical
treatment of the molecule by propagating the molecular
wave function using a two-PES Hamiltonian. However, the
method still rests on the Born-Oppenheimer approximation
and the adiabatic concept of potential energy surfaces and

thus cannot be expected to fully capture the nonadiabatic
entangled dynamics of the resonant electron and adsorbate
coordinates.

Instead we consider a Newns-Anderson-type27,28 Hamil-
tonian with substrate states �k	, a resonant state �a	, adsorbate
coordinates xi, an adiabatic adsorbate ground-state potential
V0�xi�, and a nonadiabatic coupling of the resonant electron
to adsorbate coordinates 	a�xi�,

H = T�ẋi� + V0�xi� + 	a�xi�ca
†ca + 


k

�kck
†ck

+ 

k

�Vakca
†ck + Vak

� ck
†ca� . �3�

The strength of the electronic coupling is expressed through
the function

��	� = 2�

k

�Vak�2��	 − �k� . �4�

The model as such neglects the electron-electron interaction,
but we assume that the important part of the electron-
electron interactions is the restructuring of the metallic elec-
trons when the resonance is occupied and that we can capture
this effect in an effective nonadiabatic coupling. To do this
we note that we can obtain 	a�xi� as the expectation value
differences of Eq. �3� with the adsorbate at xi with and with-
out an electron in the state �a	. Applying this to an interacting
problem leads us to identify 	a�xi�=V1�xi�−V0�xi�, where
V1�xi� and V0�xi� are the potential energy surfaces of excited
and ground states which we have obtained with linear-
expansion �SCF-DFT.

In the following we will apply the wideband limit which
means that the individual coupling coefficients Vak are as-
sumed to vary slowly in energy and the density of states ��	�
is taken as constant in the vicinity of the resonance. This
gives an energy-independent coupling �=2����a�
k�Vak�2
and the resonance spectral function corresponding to the
electronic part of Eq. �3� becomes a Lorentzian with FWHM
�.

Even in the wideband limit it is quite difficult to handle
model �3� analytically with arbitrary coupling function
	a�xi�. In particular, we would like to calculate the probabil-
ity that an incoming substrate electron of energy 	i scatters
inelastically on the resonance and is reflected back into the
substrate with final energy 	 f. Fortunately, the potential en-
ergy surfaces we are considering are close to being quadratic
in the region of interest �see Fig. 1� and the ground- and
excited-state potentials have approximately the same curva-
ture. Taylor expanding V0�xi� to second order and 	a�xi� to
first order in the vicinity of the ground-state equilibrium po-
sitions xi

0 then gives

H = �aca
†ca + 


k

�kck
†ck + 


k

�Vakca
†ck + Vak

� ck
†ca�

+ 

i

��i�ai
†ai +

1

2
� + 


i

�ica
†ca�ai

† + ai� , �5�

with �a=V1�xi
0�−V0�xi

0� and
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�i = li

�2

�

�xi
V1

xi=xi
0
, li =� �

mi�i
, �6�

where we have assumed that an appropriate transformation to
normal coordinates has been performed. Note that if the
ground- and excited-state potentials are exactly quadratic
with equal second derivatives, we can relate the coupling
constants to the positions xi

1 of the excited-state potential
minimum as �i

2=��i�Vi with �Vi=
1
2mi�i

2�xi
1−xi

0�. The quan-
tity gi= ��i /��i�2 then corresponds to an “initial quantum
number” on the excited-state surface and this becomes the
effective dimensionless coupling constant in the model �see
Appendix B�. Hamiltonian �5� has previously been subjected
to detailed analysis in the context of inelastic scattering29 and
applied to desorption dynamics16 for the case of a one-
dimensional adsorbate with model parameters.

Below we extend the results of Refs. 16 and 29 to a two-
dimensional adsorbate and calculated the coupling param-
eters �i from excited-state potential energy surfaces. We also
calculate scattering amplitudes for an adsorbate initially in a
vibrationally excited state which enable us to apply the
model to the DIMET regime.

A. DIET

In Eq. �B8� we show how to calculate the scattering prob-
ability Pni,nj

�	i� that an incoming electron of energy 	i ex-
cites the �ni ,nj� mode of a two-dimensional harmonic oscil-
lator. The probability of transferring ER or more energy to
the adsorbate can then be found by calculating

PR�	i� = 

ni,nj

Pninj
�	i�����ini + �� jnj − ER� , �7�

where ��x� is the Heaviside step function. The desorption
rate can then be calculated by integrating this expression
with the current density of incoming hot electrons. One
should note that the probability Pninj

of exciting the �ni ,nj�
modes in a two-mode model is not just given by the product
of single mode probabilities Pn in a one-mode model. This is
due to an indirect coupling of the two modes through the
resonance. The result can be generalized to include the sub-
strate temperature and we will examine the consequences of
this below.

B. DIMET

If we assume that the time between individual inelastic-
scattering events is much longer than the scattering time it-
self, it is possible to regard multiple-electron desorption
events as sequence of single-electron-scattering events. Since
we have extended the inelastic-scattering probabilities to in-
clude situations where the molecule is initially in a vibra-
tionally excited state, it is also possible to treat DIMET
events within model �5�. As an example, let us assume a
single vibrational mode which is initially unoccupied �n
=0�. When a hot electron with energy 	1 scatters inelastically
on the resonance the result will be a probability distribution
Pn1

�	1� for all vibrationally excited states n of the molecule.
If a second electron with energy 	2 now scatters on the reso-

nance, the probability distribution will change to Pn2
�	1 ,	2�

and so forth. The probability Pn2−n1
�	2 ,n1� of exciting the

state n2 given that the initial state was n1 is calculated in Eq.
�B6� and we can write

Pn2
�	1,	2� = 


n1=0




Pn2−n1
�	2,n1�Pn1

�	1� , �8�

for a two-electron event and similar expressions for multiple-
electron events. Given an initial distribution of hot electrons,
we may then calculate the probability of a desorption event
with any number of contributing electrons.

IV. RESULTS

A. Parameters

The parameters in desorption model �5� are the width of
the resonance �, the frequencies of the normal modes �i, the
excitation energy �a, and the nonadiabatic coupling coeffi-
cients �i. We cannot calculate � from first principles but we
estimate its value from the Kohn-Sham projected density of
states. It is typically on the order of 1 eV, but it will be
instructive to treat it as a free parameter and examine how it
affects desorption probabilities.

The frequencies are obtained from a standard normal-
mode analysis and �a is obtained as the excitation energy at
the ground-state potential minimum. The coupling coeffi-
cients are determined by mapping out a small area of the
excited-state potential energy surface in the immediate vicin-
ity of the ground-state potential. In each of the considered
systems, we optimize the area such that it is small enough to
be linear but large enough to suppress numerical fluctuations
in the excited-state energies. We then fit a linear function to
this area and transform the derivatives to the normal modes.

In all the considered systems the calculated normal modes
are similar but not identical to the standard COM and inter-
nal stretch modes. For example, with CO on Pt�111� the
internal stretch and COM modes are, respectively, d
= �−1,0.75� and z= �1,1�, whereas the calculated modes are
in the directions d= �−1,0.68� and z= �1,1.11� with respect
to the �xC,xO� coordinates normal to the surface. Since the
desorption probabilities are quite sensitive to the value of the
nonadiabatic coupling constants, it is important that we take
the derivatives on the excited-state PES with respect to the
correct normal modes.

Tables I and II below display the calculated parameters.
We have only examined CO at on-top sites and NO at hcp
hollow sites. NO is seen to have much lower nonadiabatic

TABLE I. Parameters for CO adsorbed at top site on four tran-
sition metals. All numbers are in eV.

Metal �a �z �d �z �d

Pt�111� 3.89 0.054 0.255 −0.142 −0.145

Pd�111� 3.64 0.061 0.256 −0.082 −0.164

Rh�111� 3.80 0.048 0.247 −0.129 −0.132

Ru�0001� 3.74 0.054 0.255 −0.134 −0.120
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coupling coefficients and excitation energies than CO. The
low excitation energies are due to the fact that NO already
has one electron in the antibonding orbital and the resonance
thus has to lie close to the Fermi level of the metal. The
small coupling coefficients can also be traced to the ground-
state occupation of the 2� orbital on NO. In the Kohn-Sham
picture we can imagine the resonance corresponding to 2�
lying right at the Fermi level being partially occupied. When
an extra electron is put into the orbital, the resonance energy
is increased due to the Hartree repulsion and the initial par-
tial occupation is lost. In the true system things are more
complicated, but the qualitative features are the same: excit-
ing NO results in less charge being transferred to the mol-
ecule than exciting CO and thus a weaker nonadiabatic cou-
pling. Thus it is much harder to transfer energy to adsorbed
NO compared to CO in a one-electron event; but since the
resonance is located much closer to the Fermi level a thermal
distribution of hot electrons is likely to result in more fre-
quent scattering events than for CO.

B. DIET desorption rates

The probability that a single electron with energy 	i scat-
ters inelastically and transfers the energy ER to an adsorbate
can be calculated in model �5� with Eq. �7�. Our basic as-
sumption is that rate of energy dissipation to the substrate is
much longer than the time of a desorption event, and when
we refer to desorption rates in the following it will mean the
rates of transferring the energy needed for a molecule to
desorb in a truncated quadratic potential.

In Fig. 2 we display the probability that an incoming elec-
tron will scatter with an energy loss in excess of the desorp-
tion energy ��E�1.5 eV� for three values of the resonance
width. When only a single mode is considered we see the
appearance of oscillator sidebands with an energy spacing of
��. At larger resonance width the sidebands are washed out
and the probability takes the form of a Lorentzian which is
detuned by ��a��E /2. A simple way to understand this
detuning is as a compromise where both the incoming and
outgoing electrons are closest to the resonance. Thus we see
the emergence of an effective inelastic resonance with a cen-
ter that is detuned dependent on the desorption energy and a
shape which is highly dependent on the lifetime. Such a
probability distribution could not have been obtained in a
model where the transfer of energy to the adsorbate is decou-
pled from the probability of capturing the electron, and the
desorption probability would always be a Lorentzian �in the
wideband limit� centered at �a and multiplied by a factor

dependent on the details of the potential energy surfaces. For
��0.5 eV the COM degree of freedom becomes unimpor-
tant and the desorption probabilities obtained using both
modes and only the internal degree of freedom become iden-
tical.

Assuming an energy-independent current of hot electrons
we can integrate the desorption probabilities in Fig. 2 to
obtain a desorption rate normalized to the incident flux of
electrons. In Fig. 3 we show how each of the two modes
contributes to the desorption rate and compare with a calcu-
lation within the classical adiabatic model �1�. The two
single mode rates are obtained by setting gd and gz to zero in

TABLE II. Parameters for NO adsorbed at hcp hollow site on
four transition metals. All numbers are in eV.

Metal �a �z �d �z �d

Pt�111� 1.71 0.039 0.196 −0.050 −0.053

Pd�111� 1.48 0.055 0.201 −0.046 −0.053

Rh�111� 1.82 0.073 0.277 −0.042 −0.020

Ru�0001� 2.14 0.042 0.192 −0.052 −0.006

FIG. 2. Desorption probability for CO adsorbed on Pt�111� for
three different values of the resonance width. For ��0.5 the one-
and two-mode probability distributions become identical Lorentz-
ians with an integrated probability that decays exponentially with
resonance width �see Fig. 3�.

FIG. 3. Desorption rate for CO adsorbed on Pt�111� as a func-
tion of resonance width �. In the wide resonance �short lifetime�
regime the rate is seen to be completely governed by the internal
stretch excitation, whereas the COM excitation is governing the
desorption rate in the narrow resonance �long lifetime� regime. The
classical rate becomes several orders of magnitude smaller than the
quantum rate at large resonance width. The inset shows the same
data on a logarithmic scale.
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Eq. �B8�. It is seen that it is the internal stretch mode that
governs the energy transfer completely in the large width
regime and the COM mode governs the energy transfer at
low width. The reason for this partitioning is the time scale
associated with the two different modes. As seen from Tables
I and II the nonadiabatic coupling constants have approxi-
mately the same magnitude for the two modes. However, the
period of oscillation is five times larger for the COM mode
and for small lifetimes there is not enough time to transfer
energy to the COM mode. From Fig. 3 we see that the maxi-
mum rate of energy transfer in each mode occurs when �
���i. The desorption rate decreases at small resonance
width, since the hot electron then becomes weakly coupled
to the resonant state

In Figs. 4 and 5 we show a comparison of CO and NO
adsorbed on the different transition metals. Again comparing
with Tables I and II it is seen that it is the coupling to the
internal mode alone which controls the magnitude of the
desorption rate at large resonance width. Since the internal

degree of freedom seems to control the rate of energy trans-
fer in the physical range of the resonance width �typically
0.5���1.5� we will ignore the COM degree of freedom in
the following.

Comparison of CO and NO

So far we have analyzed some general features of desorp-
tion probabilities and their dependence on the nonadiabatic
coupling parameters and the lifetime �=� /�. Now we will
compare the desorption probabilities of CO and NO on four
transition-metal surfaces using experimentally determined
desorption energies. Although substantial experimental data
exist for various systems including CO and NO, a direct
comparison to experimental data is difficult since experimen-
tal desorption yields are highly dependent on the distribution
of hot electrons in the substrate which depends on the de-
tailed physical properties of the metal and the applied laser
pulse. The distribution of hot electrons resulting from a given
laser pulse could in principle be calculated from first prin-
ciples; however, we will make no attempt of such a calcula-
tion here but simply compare desorption probabilities of
single-electron events as relevant for the MIM device.13,14 In
Tables III and IV we summarize the desorption energy Ed,
the estimated resonance width �, the detuning of the energy
at which the incoming electron has the maximum probability
of transferring the desorption energy �	=	i

max−�a, and the
maximum desorption probability PD

max= PD�	i
max� for the four

transition metals �the maximum probability is detuned from
�a, as shown in Fig. 2�. The detuning very nicely follows the
rule of thumb that �	�ED /2 in accordance with the picture
of a compromise between the incoming and outgoing elec-

FIG. 4. Rates of transferring 1.5 eV to CO on four transition
metals.

FIG. 5. Rates of transferring 1.0 eV to NO on four transition
metals.

TABLE III. Desorption energies and calculated maximum de-
sorption probability for CO adsorbed at top site on four transition
metals. All numbers except PD

max are in eV.

Metal ED � �	 PD
max

Pt�111� 1.37a 1.0 0.6 2�10−5

Pd�111� 1.48a 1.5 0.7 7�10−7

Rh�111� 1.45a 1.2 0.7 1�10−6

Ru�0001� 1.49a 0.9 0.7 2�10−6

aExperimental values taken from Abild-Pedersen and Andersson
�Ref. 39�.

TABLE IV. Desorption energies and calculated maximum de-
sorption probability for NO adsorbed at hcp hollow site on four
transition metals. All numbers except PD

max are in eV.

Metal ED � �	 PD
max

Pt�111� 1.29a 0.8 0.6 3�10−11

Pd�111� 1.17b 0.6 0.6 5�10−9

Rh�111� 1.68b 0.4 0.8 2�10−15

Ru�0001� 1.49c 0.3 0.7 3�10−22

aCroci et al. �Ref. 40�.
bVang et al. �Ref. 41�.
cButler et al. �Ref. 42�.
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trons both being as close as possible to the center of the
resonance �a.

In general it is easier for a single electron at the right
energy to mediate a desorption event involving CO than with
NO from all the considered systems. However, in a femto-
second laser-pulse experiment the resulting hot-electron dis-
tribution would have much lower occupation numbers at the
CO resonances than at a typical NO resonance. For example,
taking platinum as an example with a thermal electron dis-
tribution at 5000 K and referring to Tables I and II, we see
that the electronic occupation numbers at the resonance en-
ergy of CO and NO relates as f��NO� / f��NO��150. We
should also note that the excited-state potential energy sur-
faces for adsorbed NO are only quadratic in a small region
near the minimum and Hamiltonian �5� is thus not expected
to describe NO as accurately as CO.

The desorption probabilities are highly dependent on the
resonance width � which we can only estimate roughly from
the Kohn-Sham projected density of states. In addition, the
electronic lifetime of CO on Pt�111� has been shown to be
highly dependent on coverage3 since the 2� electrons be-
come delocalized and quasistationary at certain coverages.
Furthermore, both CO and NO are known to form adsorbate
structures which is more involved41,43 than the simple peri-
odic coverage of 0.25 monolayer considered here and the
dependence of nonadiabatic coupling coefficients on cover-
age certainly deserves a study of its own.

However, from Figs. 4 and 5 we do observe the general
trends that NO has a much weaker nonadiabatic coupling to
the surfaces than CO and that for both CO and NO the cou-
pling to Pt and Pd is similar, whereas the coupling is weaker
for Rh and very low for Ru. This decrease in nonadiabatic
coupling could hint at a simple dependence on the number of
d-band electrons. Investigating this will be the subject of
future work.

C. DIMET desorption rates

To get an idea of desorption probabilities in the DIMET
regime, we will start by examining how an initial excitation
influences the probability of transferring a given number of
vibrational quanta. When the oscillator is in an excited vibra-
tional state there is also the possibility of stimulated emission
of vibrational quanta where the incoming hot electron gains
energy by the scattering event.

In Fig. 6 the maximum probability of transferring �n
quanta is shown for a range of initial quantum numbers n.
We treat n as a continuous variable since in the case of a
thermal ensemble of states the initial quantum number is
simply replaced by a Bose distribution. There is a striking
increase in the probabilities of transferring energy to the os-
cillator if the oscillator is already excited. For example, the
probabilities of exciting 0→3 and 3→6 are 3�10−3 and 2
�10−2, respectively, although both transitions involve the
same energy transfer. Thus if we compare the one-electron
event P0→6=6�10−6 with the product of the two probabili-
ties P0→3→6=6�10−5, we get an order-of-magnitude differ-
ence and we still need to include the other channels for trans-
ferring six quanta in a two-electron event.

This also implies that the effect of a finite substrate tem-
perature is twofold. The occupation numbers of excited vi-
brational states will be nonzero, meaning that less energy
transfer is needed to desorb the molecule and the likelihood
of a given energy transfer is increased if the molecule is
thermally excited. However at room temperature the prob-
ability that the internal mode is in its first-excited state is on
the order of 10−5 and we can safely neglect the effect of
temperature.

A hallmark of the DIMET regime is the power-law depen-
dence of the desorption rate on the laser fluence R�Fn

where n depends on the particular adsorbate/substrate system
considered.4 It is by no means trivial that the desorption rate
should follow a power law and calculating the exponent of a
particular system is a major challenge of any DIMET model.

It is reasonable to assume that the laser fluence is propor-
tional to the flux of hot electrons hitting the molecule, since
the desorption rate typically becomes linear44 for small flu-
ences corresponding to the DIET regime. As a simple model
for the desorption rate we then consider a given flux J of hot
electrons at a fixed energy 	i hitting the resonance in equally
spaced time intervals �t=1 /J. We assume that each vibra-
tional quantum has a fixed lifetime Tvib and that desorption
occurs immediately if the vibrational energy reaches the de-
sorption energy ED. The probability that one vibrational
quantum survives the time interval �t is e−�t/Tvib and the
probability of decay is �1−e−�t/Tvib�. The probability that the
first electron excites the nth vibrational state is then simply
the DIET probability,

Q1�n� = Pn�	i,0� , �9�

where Pn�	i ,0� is given by Eq. �B6�. The probability of the
adsorbate being in the nth vibrational state after the second
electron has scattered is

Q2�n� = 

m=0




p�m�Pn−m�	i,m� , �10�

where Pn−m�	i ,m� is the probability of the transition m→n
�Eq. �B6�� and p�m� is the probability that the adsorbate was
initially in the state m given by

FIG. 6. Maximum probability of transferring �n vibrational
quanta given that the initial state is n with �=1.0 eV.
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p�m� = 

k=m




Q1�k�� k

m
��e−�t/Tvib�m�1 − e−�t/Tvib�k−m

� ��Ed − ��k� . �11�

Thus we only sum over values of k below the desorption
energy since states above ED would previously have been
desorbed by assumption. Similarly the probability Q3�n� of
being in the nth excited state after the third scattering event
can be expressed in terms of Q2�n� and so forth. The desorp-
tion probability of the Nth electron is then

PN
des = 


n

QN�n�����n − ED� . �12�

When enough time intervals are included the probabilities
converge such that PN

des= PN−1
des and the desorption rate is

R�J�=JPN
des with J=1 /�t.

In Fig. 7 we show the rate for NO on Pt�111� with �
=0.8 eV. The desorption energy corresponds to 8 vibrational
quanta. Note that changing the lifetime Tvib in this model just
corresponds to rescaling the flux. The similarity to similar
experimental figures44 is striking. At small flux the rate is
linear whereas it obeys a power law �R�Jn with n�1� at
higher fluences. The fit to a power law is very good for
fluxes above 0.2 Tvib

−1 . For small values of the detuning
�−0.4��	�0.2 eV� we find that 5.5�n�6, in good agree-
ment with Ho.44 For large positive values of the detuning the
exponent decreases dramatically which is probably due the
fact that fewer transitions dominate the dynamics in this re-
gion. This means that even though the results were obtained
using the simple electron flux J�	i�=J0��	i−�a−�	� we
would most likely obtain the same exponent if we general-
ized the model to any flux localized within �0.2 eV of the
resonance.

Although the correspondence with the experimentally
found exponent may be fortuitous in such a simple model,
the power law itself is very robust to changes in the param-
eters and we obtain similar power laws for CO on Pt�111�.
For example, changing the value of � results in an overall
shift of the rates but the exponents are essentially unchanged.
Indeed the exponents appear to be determined mainly by the
number of vibrational quanta needed for desorption.

V. SUMMARY AND DISCUSSION

We have previously presented a method to obtain excited-
state potential energy surfaces for molecules chemisorbed at
metal surfaces.26 In this paper the method has been applied
and combined with a nonadiabatic quantum model to obtain
desorption probabilities for CO and NO on four transition-
metal surfaces.

The model we have applied allows us to predict the prob-
ability that a hot electron will transfer a given amount of
energy to the different vibrational modes of an adsorbate.
Our main conclusion is the significant role of the internal
degree of freedom and the failure of classical mechanics to
describe the excited-state adsorbate propagation. Combining
the model with a simple picture of the decay and re-
excitation of vibrational states reproduces the characteristic
power laws of DIMET experiments and yields the exponent
associated with a given adsorbate/substrate system.

The model we have used for calculating the energy-
transfer rates obviously represents a very simplified view of
the dynamics. First of all it is a model of noninteracting
electrons. We assume that we can include the important part
of the electron-electron interactions by using nonadiabatic
coupling coefficients �i obtained from the interacting density
with linear-expansion �SCF-DFT. The approximation
amounts to assuming ballistic hot electrons and instanta-
neous restructuring of the electronic environment when oc-
cupying the resonance. Although this may be the case in
some metallic systems, electron-electron interactions could
have effects which go beyond a simple renormalization of
the nonadiabatic coupling. The linear nonadiabatic coupling
regime leading to Eq. �5� corresponds to an assumption of
equal curvature on the ground- and excited-state PESs. This
is a good approximation for CO but NO has a very shallow
excited-state PES on some of the transition metals and there
the approximation may not be as good.

Furthermore the model assumes that the ground-state po-
tential is quadratic and that the excited-state potential is sim-
ply a shifted ground-state potential. At least in the COM
direction it is clear from Fig. 1 that the ground-state potential
deviates significantly from a quadratic potential and since we
are concerned with high-lying vibrational excitations, this
deviation could perhaps have an important effect. It may be
possible to include anharmonic terms in the Hamiltonian and
calculate different scattering amplitudes perturbatively but
this will be left for future work.

We have focused on the molecules CO and NO, since they
have a conceptually simple structure and a vast amount of
experiments have been performed on these systems. How-
ever, it is well known that generalized gradient approxima-

FIG. 7. �Color� Desorption rate as a function of electron flux per
adsorption site. For small electron flux the rate is linear in the flux
corresponding to the DIET regime, whereas for larger electron flux
the rate obeys a power law �R�Jn with n�1� corresponding to the
DIMET regime. In this figure we show the desorption rate of NO on
Pt�111� using the parameters given in Table IV and in seven differ-
ent values of detuning.
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tion �GGA�–DFT calculations of CO adsorbed an Pt�111�
predict CO to bind at a hollow site in contradiction to the
experimentally observed top site.45 While the difference in
adsorbtion energy appears to be less with GPAW than in the
calculations presented in Ref. 45, possibly due to the use of
the PAW method instead of ultrasoft pseudopotentials, the
difference is still 80 meV and the inability to predict the
correct binding site is worrying. On the other hand, the ex-
istence in the calculation of another adsorption site with a
slightly lower energy is unlikely to change the local shape in
the potential energy surface enough to qualitatively change
the results obtained here. In addition, we see a very similar
behavior for CO on Ru�0001�, where DFT does predict the
right adsorption site �the top site�. We have thus chosen to
put CO at the experimentally observed top site as the hollow
site would lead to a smaller surface molecule distance and
thus very different screening and desorption rate.

As previously mentioned the value of � is estimated from
the Kohn-Sham projected density of states, but we do not
know how well this estimate matches the true value and as
such we have mostly treated � as a free parameter. In fact the
object of interest in the problem is the spectral function of
the resonant state; but even if we had a reliable way of de-
termining this function we would have to make the wideband
approximation �where the spectral function is a Lorentzian of
width �� in order to calculate scattering rates. Nevertheless it
would be very interesting to calculate this function to get an
idea of the validity of the wideband approximation and to
obtain a trustworthy value of �.

We have not made any attempt to predict how the distri-
bution of energy evolves after a molecule returns to its elec-
tronic ground state, but assume that the dissipation of energy
is slow enough that the adsorbate will desorb if the desorp-
tion energy has been transferred. This is of course a rather
crude assumption and the rate of energy transfer should be
accompanied by a detailed molecular propagation on the
full-dimensional ground-state PES to improve the results.
Ground-state molecular dynamics would also be necessary to
obtain branching ratios when there is a possibility of differ-
ent chemical reactions induced by hot electrons.

However the model we have presented captures some of
the essential features of nonadiabatic dynamics. For ex-
ample, the appearance of an effective inelastic resonance
which is detuned from the electronic resonance by an amount
depending on the energy transfer is a pure nonadiabatic re-
sult and would never have emerged from an adiabatic model.
Furthermore the exponents in the DIMET power laws appear
to be determined by the number of vibrational quanta needed
for desorption and thus communicate the quantum nature of
the dynamics.
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APPENDIX A: PROJECTING KS STATES ON A
MOLECULAR ORBITAL IN PAW

The PAW method32 utilizes that one can transform single-
particle wave functions ��n	 oscillating wildly near the atom
core �all-electron wave functions� into smooth well-behaved

wave functions ��̃n	 �pseudowave functions� which are iden-
tical to the all-electron wave functions outside some aug-
mentation sphere. The idea is to expand the pseudowave
function inside the augmentation sphere on a basis of smooth
continuations ��̃i

a	 of partial waves ��i
a	 centered on atom a.

The transformation is

��n	 = ��̃n	 + 

i,a

���i
a	 − ��̃i

a	��p̃i
a��̃n	 , �A1�

where the projector functions �p̃i
a	 inside the augmentation

sphere a fulfills



i

�p̃i
a��̃i

a	 = 1, �p̃i
a��̃ j

a	 = �ij, �r − Ra� � rc
a.

The method of linear-expansion �SCF involves expand-
ing a molecular orbital ��i	 in Kohn-Sham states ��n	 and
does a self-consistent calculation with an additional density
corresponding to the orbital.26 The simplest way of getting
the expansion coefficients is using the projector overlaps

��n ��i	���̃n � p̃i
a	 which is calculated in each iteration any-

way. However, this method turns out to be too inaccurate in
the case of CO on Pt�111� due to nonvanishing projector
overlaps for highly energetic Kohn-Sham states as shown in
Fig. 8. This implies that the expansion coefficients depend on
the number of unoccupied bands included in the calculation

To calculate the overlaps ��n ��i	 exactly, one should start
by performing a gas-phase calculation of the molecule or
atom which is to be used in the �SCF calculation. The

pseudowave function �̃i�x� corresponding to the orbital to be
occupied is then saved along with the projector overlaps
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FIG. 8. Ground-state calculation of CO adsorbed on Pt�111� top
site. The projected density of states of the 2� orbitals using the
methods of projector or pseudowave-function overlap and all-
electron wave-function overlap are compared. In the projector over-
lap method the orbital is defined by �p̃2�	= 1

�13
�3�p̃x	C−2�p̃x	O�

which is the orbital most similar to the gas-phase calculation. The
long high-energy tail of the projector overlap signals an inaccuracy
of the method and makes excited-state calculations dependent on
the number of unoccupied bands. Thus we use the all-electron over-
laps to determine expansion coefficients in this work.
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�p̃k
a � �̃i	 and the �SCF calculation is initialized. In each step

of the calculation we can then do a numerical integration to
obtain the expansion coefficients by

cni = ��n��i	 = ��̃n��̃i	 + 

a,j,k

��̃n�p̃j
a	��� j

a��k
a	 − ��̃ j

a��̃k
a	�

��p̃k
a��̃i	 , �A2�

where Eq. �A1� was used. Note that there is only a single
sum over atoms �and only the ones in the molecule� and that
the cross terms of pseudowave or all-electron wave function
does not contribute. This can be seen using the arguments
following Eq. 20 of Ref. 33.

APPENDIX B: CALCULATING THE INELASTIC-
SCATTERING PROBABILITY

Here we briefly summarize the calculation leading to the
inelastic-scattering probabilities in model �5�.29 An explicit
expression for the probability has previously been obtained29

for a single mode at initially in the ground state. Here we
will extend the result to an explicit expression for any num-
ber of modes initially in a thermal ensemble of vibrationally
excited states.

From Hamiltonian �3� the differential reflection matrix
R�	i ,	 f� which is defined as the probability per unit final-
state energy that an incoming hot electron with energy 	i
scatters on the resonance into a final state of 	 f can be ex-
pressed in terms of the four-point Green’s function. The in-
elastic part is contained in the expression,

Rin�	i,	 f� = ��	 f���	i�� � � d�dsdt

2��3 ei��	i−	f��+	ft−	is�/�

�G��,s,t� , �B1�

where the Green’s functions is

G��,s,t� = ��s���t��ca�� − s�ca
†���ca�t�ca

†�0�	 ,

c�t� = eiHt/�c�0�e−iHt/�, �B2�

and � 	 denotes a thermal ensemble of oscillator states. The
expression is valid for any nonadiabatic coupling function
	a�x�, but in general it can be very hard to obtain an expres-
sion for the Green’s function. An exception is the wideband
limit with linear coupling corresponding to Hamiltonian
�5�.29 The Green’s function then becomes

G��,s,t� = ��t���s�e−i�a�t−s�/�−��t+s�/2�

�exp�

i

gi�i�t − s��i − �1 + ni�f i − nif i
��� ,

�B3�

where �a is center of the resonance, ni is the Bose distribu-
tion, gi= ��i /��i�2 is the effective coupling constant of the
mode i, and

f i��,s,t� = 2 − e−i�it − ei�is + e−i�i��1 − ei�it��1 − ei�is� .

�B4�

The integrals in scattering matrix �B1� can be evaluated by
writing the exponentials in Eq. �B3� as Taylor expansions
and performing the � integral. This leaves the remaining two
integrals as complex conjugates which are evaluated by writ-
ing factors such as �1−ei�it�m by their binomial expansions.
For a single oscillator with thermal occupation n we obtain
the inelastic reflection matrix,

Rin�	i,	 f,n� = �2e−2g�1+2n� 

m1=0






m2=0



gm1+m2�1 + n�m1nm2

m1 ! m2!

���	i − 	 f − �m1 − m2���� � F�m1,m2� ,

�B5�

with

F�m1,m2� = 

i=0

m1



j=0

m2

�− 1�i+j�m1

i
��m2

j
�

�

k=0






l=0



gk+l�1 + n�knl

k ! l!

�
1

	i − �a − �i − j + k − l − g��� + i�/22

.

Although the expression looks rather complicated it has a
simple interpretation. Integrating over final-state energies in
the vicinity of �n=m1−m2 gives the probability of transfer-
ring �E=�n�� to the oscillator if the energy of the incom-
ing electron is 	i,

P�n�	i,n� = �2e−2g�1+2n��g�n�1 + n��n

�n!
F��n,0�

+
g�n+1�1 + n��n+1gn

��n + 1�!
F��n + 1,1�

+
g�n+2�1 + n��n+2�gn�2

��n + 2� ! 2!
F��n + 2,2� + ¯� ,

�B6�

where the first term is the probability of adding �n bosons,
the second term is the probability for removing �coupling ng�
one, and adding �coupling �n+1�g� �n+1 bosons and so
forth.

We can also evaluate the differential reflection matrix for
N oscillators initially in the ground state with frequencies
and coupling constants �i and gi, respectively. The result is
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Rin�	i,	 f� = �2e−2
i=1
N gi 


m1=0




¯ 

mN=0



g1

m1
¯ gN

mN

m1 ! ¯ mN!
��	i − 	 f − 


i=1

N

mi��i��

j1=1

m1

¯ 

jN=1

mN

�− 1�
i=1
N ji�m1

j1
�¯ �mN

jN
�

� 

L1=0




¯ 

lN=0



g1

l1
¯ gN

lN

l1 ! ¯ lN!

1

	i − �a + i�/2 − 

i=1

N

�ji + li − gi���i�
2

. �B7�

It is amusing that result �B5� for a one-mode system with initial excitation number n follows from result �B7� if we regard Eq.
�B5� as a two-mode system at T=0 with energies �� and −�� and coupling constants g�n+1� and gn, respectively. For
convenience we state the probability of exciting the �md ,mz� state from the ground state in the two-dimensional model with
modes d and z,

Pmdmz
�	i� = �2e−2�gd+gz�

gd
mdgz

mz

md ! nz!



jd=1

md



jz=1

mz

�− 1� jd+jz�md

jd
��mz

jz
�


k=0






l=0



gd

kgz
l

k ! l!

1

	i − �a − �jd + k − gd���d − �jz + l − gz���z + i�/22

.

�B8�

Elastic scattering

The elastic part of the scattering matrix for a single oscillator with thermal occupation number n is

Rel�	i,	 f,n� = ��	i − 	 f��1 + 2 Im GR�	i�� ,

GR�	� =� dt

�
ei	t/�GR�t� ,

GR�t� = − i��t��n�ca�t�ca
†�0��n	 . �B9�

We can use the linked cluster theorem to derive the retarded Green’s function and get the result

GR�t� = − i��t�e−g�1+2n�e�−i�a−ig��−�/2�t/� 

m1=0






m2=0



gm1nm1gm2�1 + n�m2

m1 ! m2!
e−i�m2−m1��t. �B10�

We can then calculate the elastic part of the scattering probability and get

Pel�	i,n� = 1 − �2e−g�1+2n� 

m1=0






m2=0



gm1nm1gm2�1 + n�m2

m1 ! m2!

1

�	i − �a − �m2 − m1 − g����2 + ��/2�2 . �B11�

When calculating the elastic-scattering probability one should also remember to include the m1=m2 terms in Eq. �B5�.
The n in the expressions above denote the Bose distribution and not a specific state �n	, but in the context of DIMET our

main point of interest is the probability that a oscillator initially in the state �ni	 scatters inelastically to the state �nf	. However,
the expression in the case of a pure state is very similar to the thermal ensemble, the only difference being that we should make
the substitution

e−gini�f i+f i
�� → Lni

�g�f i + f i
��� �B12�

in Eq. �B3�, where Ln�x� is the nth Laguerre polynomial. The expression involving Laguerre polynomials is somewhat more
complicated to handle numerically and therefore we have chosen to work with the thermal ensemble expressions instead. In the
range of parameters in the present work, the thermal ensemble expressions are very good approximations since Ln�x� have the
same first-order Taylor expansion as e−nx and for t�� /� we get gif i�0.001.
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